Elliptic Linear Problem for Calogero - Inozemtsev Model and Painlevé VI Equation

نویسنده

  • A Zotov
چکیده

We introduce 3N × 3N Lax pair with spectral parameter for Calogero-Inozemtsev model. The one degree of freedom case appears to have 2 × 2 Lax representation. We derive it from the elliptic Gaudin model via some reduction procedure and prove algebraic integrability. This Lax pair provides elliptic linear problem for the Painlevé VI equation in elliptic form.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Towards Finite-Gap Integration of the Inozemtsev Model

The Inozemtsev model is considered to be a multivaluable generalization of Heun’s equation. We review results on Heun’s equation, the elliptic Calogero–Moser–Sutherland model and the Inozemtsev model, and discuss some approaches to the finite-gap integration for multivariable models.

متن کامل

The Heun Equation and the Calogero-moser-sutherland System Ii: the Perturbation and the Algebraic Solution

We justify the holomorphic perturbation for the 1particle Inozemtsev model from the trigonometric model and show the holomorphy of the eigenvalues and the eigenfuncions which are obtained by the series expansion. We investigate the relationship between the L 2 space and the nite dimensional space of certain elliptic functions, and determine the distribution of the \algebraic" eigenvalues on the...

متن کامل

Painlevé-Calogero Correspondence Revisited

We extend the work of Fuchs, Painlevé and Manin on a Calogero-like expression of the sixth Painlevé equation (the “Painlevé-Calogero correspondence”) to the other five Painlevé equations. The Calogero side of the sixth Painlevé equation is known to be a non-autonomous version of the (rank one) elliptic model of Inozemtsev’s extended Calogero systems. The fifth and fourth Painlevé equations corr...

متن کامل

The Heun Equation and the Calogero-moser-sutherland System Iii: the Finite-gap Property and the Monodromy

where ℘(x) is the Weierstrass ℘-function with periods (1, τ), ω0 = 0, ω1 = 1 2 , ω2 = − τ+1 2 , ω3 = τ 2 are half-periods, and li (i = 0, 1, 2, 3) are coupling constants. This model is a one-particle version of the BCN Inozemtsev system [6], which is known to be the universal quantum integrable system with BN symmetry [6, 11]. The BCN Calogero-Moser-Sutherland systems are special cases of BCN I...

متن کامل

The Heun Equation and the Calogero-moser-sutherland System Ii: Perturbation and Algebraic Solution

We apply a method of perturbation for the BC1 Inozemtsev model from the trigonometric model and show the holomorphy of perturbation. Consequently, the convergence of eigenvalues and eigenfuncions which are expressed as formal power series is proved. We investigate also the relationship between L space and some finite dimensional space of elliptic functions.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003